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We consider lattice spin systems with short-range but random and unbounded 
interactions. We give an elementary proof of uniqueness of Gibbs measures at 
high temperature or strong magnetic fields, and of the exponential decay of the 
corresponding quenched correlation functions. The analysis is based on the 
study of disagreement percolation (as initiated by van den Berg and Maes). 
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1. INTRODUCTION 

The subject of this paper is the characterization of the uniqueness regime 
of Gibbs fields with random potential. We refer to Olivieri et  al, 1~2~ 

Berretti, t2~ Fr6hlich and Imbrie, 17~ and Bassalygo and Dobrushin tl) for the 
necessary background. A more recent detailed analysis can be found in 
Perez, 1131 Klein, I11~ and von Dreifus et a lJ  61 Here we wish to show how 
recently developed percolation techniques t3~ can be applied to give elemen- 
tary proofs of many results that have appeared in the papers mentioned 
above. 

The extension to interactions with unbounded disorder of general 
uniqueness criteria such as the Dobrushin t4) single-site condition or the 
Dobrushin-Shldsman ~5~ constructive criteria does not seem straightforward 
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at all. The method that  we present below and which is based on the 
uniqueness criterion of van den Berg and Maes TM provides such a general 
theory. In another  paper  r we show how the same ideas can be used in the 
study of dynamics of  disordered systems. 

2. E Q U I L I B R I U M  STATES W I T H  R A N D O M  P O T E N T I A L S  

For  convenience we consider spin systems defined on the regular 
d-dimensional lattice Z d. As will become clear, the arguments  that  follow 
are valid on a more  general periodic lattice (e.g., the tr iangular or the FCC 
lattice). 7/d comes equipped with the usual structure of nearest neighbor  
sites x , y  connected by bonds ( x , y ) .  If  two sites x and y are nearest 
neighbors (or adjacent) we will write x ~ y. 

A configuration tr puts a spin value a ( x ) =  1 or t r ( x )=  - 1  on every 
site x e 7/a. The set f2 = { - 1, + 1 } z~ is the set of  all configurations. Our  
results can easily be extended to other finite single-site state spaces. 

A probabil i ty measure v on /2 is a M a r k o v  field if for every finite 
AcT/a ,  l l ~ { - 1 , 1 }  "~, 

v i a  =~1 on A I o'(i), i e  A ~] = v i a =  r l on A I a(i), i eOA]  (1) 

where A " =  7/a\A and 8A is the set of all sites in A" that  are adjacent to 
A. A major  problem in statistical mechanics is to determine the Markov  
fields v which satisfy for all finite A c Z a, all r/e { -- 1, 1 } "~, 'l '  e { -- 1, 1} 0A 

with 

v [ a = r / l o ' = r / '  on OA] = YAOI, rf) 

{ YA( ", ' f ) ,  A c 7/'1, finite, q ' e  { - 1, 1} ~ } 

(2) 

(3) 

a given set of self-consistent condit ional probabilit ies (a specification) 
possibly parametr ized (among  other things) by the inverse tempera ture  
fl>~0, external fields, etc? 81 In that  case we say that  v is a Gibbs  measure  
with respect to the specification { YA}- We look for conditions on the set 
{ YA( ", q)} such that  there exists just one associated Gibbs  measure. This is 
also the context of  refs. 3-5. 

What  is specific to our  sttidy here is that  the specification is random, 
i.e., the YA = Y,~ depend not only on the values of certain fixed parameters ,  
but also on the realization n of  the randomness.  This is what  we call 
disorder. 



Gibbs Fields with Unbounded Disorder 831 

One typically considers two types of quenched disorder. One is realized 
by the nearest neighbor couplings { J.,:,,} x-y  and the other by a set of single- 
site parameters {hx} (also denoted below by {),,.} if not referring to a 
random magnetic field). We assume that the {J,_,,} are real (possibly 
infinite)-valued mutually independent, and identically distributed random 
variables. Similarly for the {h.,.} ({y.,.}). Examples will follow where these 
parameters enter explicitly. Sometimes it is, however, more convenient to 
speak about "realizations" in general without specifying exactly how the 
disorder is frozen in the interactions or transition rates. Indeed, the 
relevant objects for our analysis are the (random) specifications and we do 
not need to refer to specific forms of the interaction. We therefore write 
to denote such a general (random) realization (of the disorder). 

/-/is the set of all these realizations. Q is the probability law on the 
realizations. E is the expectation value with respect to the distribution Q. 

An important example is the following random-field short-range spin 
glass with formal Hamiltonian: 

H =  -- ~ J,_,,g(x) a ( y ) - b ~ h x ~ ( x ) - h  ~a(x)  (4) 
( x . y )  x x 

determined by a realization of one- (h.,.) and two-point interactions (J.,_,,). 
The specification { YA} is obtained by taking the finite-volume Gibbs 
measures (fixed boundary conditions outside A) with respect to the 
Hamiltonian H at inverse temperature ft. For A = {x} we then have (with 
some abuse of notation) 

exp[ fl Ey ~.,- J,.,,cr(x) a(y) + (flbh,. + flh ) a(x) ] 
r ' , ,(a(x), cr) = Z~({J.,.,,, o '(y)}, ...... h, h.,., b) (5) 

Another example is the hard-core lattice gas with random choice of 
the activities ax = exp(2y,,.) - 1. The y.,. >/0 are random and 2 ~> 0 is an extra 
parameter. The single-site conditional distribution is 

{lo-e-~'~'-~ if, forall y ~ x ,  ~ l (y )=- I  
Y,.( 1, 17) - otherwise (6) 

The construction of a Gibbs measure v, with respect to the specifica- 
tion { IrA = I~ ! will obviously depend on the realization ~. The uniqueness 
of the Gibbs measure should be understood in the sense that with Q-prob- 
ability one there is just one such Gibbs measure. For these equilibrium 
measures, we define the truncated correlation function of the local func- 
tions f and g on g2 as 

( f ;  g ) ,  = v,(fg) - v,(f)  v,(g) (7) 
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We also will use the notation 

dist(f ,g) = min I x - y [  (8) 
x E s u p p  f 
x E s u p p g  

with s u p p f  the support o f f  and Ix-yl =Z~=l Ix~-y=l. Here Ilfll is the 
usual supremum norm o f f  and 6x = sup, I I f (q"-) - f ( r / ) l  the oscillation of 
f at x e 2U. The total oscillation is then 

IIIflll = ~ &.,.f 
x ~ 7:d 

3. U N I Q U E N E S S  R E G I M E  

Let 

q_,. = m a x  var( Y.,.(., q), Y,.(., pf)) (9) 
q. q'  

where var(., �9 ) (s[0, 1 ]) is the variational distance. 
Everything that follows is expressed in terms of the distribution of the 

field {q.,.}. Remember that the q.,. depend on the realization ~ and on extra 
parameters (such as the temperature and external fields) as inherited from 
the specification. So instead of referring to the high-temperature or strong- 
external-field regimes separately, the single-phase regime of our disordered 
system will be obtained if "typically" the q.,. are "small" for all x in a suf- 
ficiently "big" set. Using definition (9), for every specific model one can get 
explicit conditions on the realizations and the external parameters. It is 
important to observe that q.,. and q,, may be correlated for x r  However, 
in all relevant examples the randomness in the specification enters locally 
and has a high degree of independence. While the arguments that follow 
essentially go through unchanged under the assumption that there is a 
finite "distance" R for which qx and qy a r e  independent whenever the 
"distance" between x and y exceeds R, for simplicity we require that this 
already happens for R = 1, i.e., qx and qy may be correlated for x r  only 
if x ~y ,  otherwise they are independent; {q.,.} is a one-dependent random 
field. This is verified in all examples discussed here. 

Another feature present in all our examples of interest is that, with 
Q-probability one, there are finite regions of all sizes on which q.,. is large. 
These regions are responsible for the so-called Griffiths' singularities/l~ 
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In the spin-glass example (4) with b = 0, we have 

q., .=l/2Itanh(fl  ~, IJ.,.yl+flh)+tanh(fl ~, IJ,.:,l-flh)l (10) 

Note  that  q.,. can be made "small" both  by taking fl > 0 small or taking h 
large. If  on the other  hand we take in (4) 0 ~ J , : , . = J <  oo fixed and h = 0 ,  
we get a random-field Ising model  with 

qx = �89 [ tanh fl(2dJ + bh,.) + tanh fl(2dJ- bh.,.)] ( 11 ) 

For  the example of  the hard-core lattice gas (6), we have q.,.= 
1 - exp( - 2 L). 

T h e o r e m .  If  {q.,-}.,-~za, as defined by (9), is a s tat ionary one- 
dependent  r andom field satisfying. 

1 
E(q.,.) < - - - - - - - ~  (12) 

( 2 d -  1 ) 

then- -wi th  Q-probabi l i ty  one - - the re  is a unique Gibbs  measure v s. 
Moreover ,  

E ( l ( f ;  g )= l )  <~ C(f, g) e -"ldisttf'g~ (13) 

for all local functions f and g, with m > 0 and C(f,  g ) =  C Ilfll' Ilrg[ll < o~. 

Proos Absence of independent site percolation with densities 
{q.,-}.,-~z~ implies the uniqueness of  the Gibbs  state for the specification 
used in definition (9) for, the {q.,-}.,.~z,. This is a consequence of 
Corol lary 2 in van den Berg and Maes. (3) Let v, be the unique Gibbs  
measure. A straightforward application of Corol lary 2 in van den Berg and 
Maes ~3) yields that 

I ( f ;  g)~l  ~< [Ifll '  [l[glll max ~, G,(x,y) (14) 
x ~ s u p p g  y~supp f 

where G,(x, y) is the probabil i ty in the independent site percolat ion pro-  
cess to find an open pa th  from x to y if the realization is n. ( Independent ly 
a site x is open with probabi l i ty  qx and is closed with probabil i ty 1 -q. , . . )  

Consider now a self-avoiding path  co, Icol = n, f rom x to y. We have 

G,(x,y)<~ ~, ~, 1-] q,o, (15) 
n > ~ l x - y l  Iml=n /even 
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where coi is the ith site in the path  09. Taking  the expectat ion of bo th  sides 
of  (15) and using the independence of {q,} I ....... I completes the p roof  

R e m a r k s .  1. F rom the examples it is clear that  it is not always 
possible to tune an external parameter  to make  q.,. (pointwise) arbitrari ly 
small on any site x. For  instance, in the spin-glass example (10) (or in the 
hard-core lattice gas) always qx = 1 if J,:~ = oo (~,. = co) or in the random-  
field Ising model ( 11 ) q.,. = tanh  2dflJ  when h.,. = 0, independent  of  b. When 
this happens we call a site x "bad." Therefore,  a necessary condit ion for the 
assumption of the Theorem to be satisfied is that  the Q-probabi l i ty  of  a site 
to be "bad"  is itself small enough. In a way this condit ion is also sufficient: 
see, e.g., in the spin-glass example (10), if Q{J, . , ,=  ~ }  < 1 / ( 2 d - 1 )  2, then 
for fl > 0 sufficiently small condition (12) is satisfied. At the same time, the 
Theorem does not give the best possible bound on the smallness of E(q.,). 
Depending on specific models and using the main underlying idea we can 
improve substantially on this bound. For  example, in the random-field 
Ising model  (11) with {h,.} an independent  identically distributed field, 
when E(q.,.) < p,.(7/d), the threshold for independent site percolation on 7/d, 
then the same conclusions as in the Theorem hold. 

2. Our  main message is that  the uniqueness regime of the disordered 
system will inherit all the nice propert ies of  an associated indepen 
dent percolation process. We only stated (13) as an impor tant  example. 
Von Dreifus et al. ~6) show that  for the case of  the Hamil tonian  (4), the 
exponential  decay of  the truncated correlat ion functions [as  in (13)] 
implies the existence of the rmodynamic  limits and the infinite differen- 
tiability of the correlation functions with respect to the external magnetic 
field h. 

3. One can also consider lattices without a biparti te structure, but 
with a bounded number  N of nearest neighbors. Then in every set of  M 
sites we can find at least M / ( N  + 1) nonneighboring sites, where the q.,. are 
independent. 
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